Limits of weighted hyperfinite graphs

Konrad Królicki

Alfréd Rényi Institute of Mathematics k.krolicki@renyi.hu

Winter School in Abstract analysis, Tuesday 1st February, 2022

Joint work with Gábor Elek

Konrad Królicki (Rényi Institute)

Limits of weighted hyperfinite graphs

Tuesday 1st February, <u>2022</u>

1/13

Fix a f. g. group Γ and its finite system of generators $S = S^{-1}$.

Goal: What does it mean that a sequence of Schreier graphs $(G_n)_{n=1}^{\infty}$ converges?

Rooted Schreier graph (G, v): Schreier graph G with a distinguished vertex v.

 S_{Γ} : space of (the isomorphism classes of) finite connected rooted Schreier graphs of Γ (w.r.t. S).

Two rooted graphs on S_{Γ} are close if large balls around their roots are isomorphic. This topology makes S_{Γ} into a space homeomorphic with the Cantor set.

Given a finite Schreier graph G we get a probability measure μ_G on \mathcal{S}_Γ by taking

$$u_{G} = \frac{1}{|G|} \sum_{\mathbf{v} \in G} \delta_{(C_{\mathbf{v}}, \mathbf{v})},$$

where C_v is the component of v.

Then a sequence $(G_n)_{n=1}^{\infty}$ is said to be convergent if μ_{G_n} weakly converge to some measure μ . [Benjamini-Schramm, 2001]

Given an action $\alpha : \Gamma \curvearrowright (X, \mu)$, where (X, μ) is a standard probability space, there is a measurable map

$$M: X \to \mathcal{S}_{\gamma},$$

given by

$$M(x):=(G_x,x),$$

where G_x is the Schreier graph of α on the orbit of x.

Then, the graphing \mathcal{G}_{α} of the action α is called the limit of a sequence $(G_n)_{n=1}^{\infty}$ if μ_{G_n} weakly converge to the pushforward $M_*\mu$.

Theorem

If $\mu \in Prob(S_{\Gamma})$ is a limit of finite graphs, then there exists a p.m.p. action $\alpha : \Gamma \curvearrowright (X, \nu)$ such that $\mu = M_*(\nu)$.

Question

Is the graphing of any p.m.p. action of a finitely generated group a limit of finite Schreier graphs? [Aldous-Lyons Conjecture, '07]

Consider $\Gamma = \mathbb{Z}$ acting on the set [n] by addition modulo n. Taking the generator system $S = \{\pm 1\}$, we obtain that the corresponding Schreier graph is an *n*-cycle; call it G_n .

Then, μ_n converges to μ which is the measure concentrated on a two-ended line graph (with root anywhere). Therefore, the graphing of any free p.m.p. action of \mathbb{Z} represents a limit of $(G_n)_{n=1}^{\infty}$.

6/13

Definition

A graphing \mathcal{G} on a probability space (X, μ) is called *hyperfinite* (or μ -hyperfinite) if for any $\epsilon > 0$ and $K \in \mathbb{N}$ there is a set $Z \subseteq X$ such that the components of $\mathcal{G} - Z$ have at most K elements.

Definition

A sequence of graphs $(G_n)_{n=1}^{\infty}$ is called *hyperfinite* if for any $\epsilon > 0$ and $K \in \mathbb{N}$ there are sets of nodes $Z_n \subseteq V(G_n)$ such that all components of $G_n - Z_n$ have at most K nodes and $|Z_n| < \epsilon |V_n|$.

Theorem (Schramm, '08)

Let \mathcal{G} be a graphing which is a local limit of a graph sequence $(G_n)_{n=1}^{\infty}$. Then \mathcal{G} is hyperfinite if and only if $(G_n)_{n=1}^{\infty}$ is hyperfinite.

イロト 不得 トイラト イラト 一日

We wish to do a similar thing for graphs with weights: (G, w), where G is finite and w is a probability measure on V(G) such that w(v) > 0 for all $v \in V(G)$.

Issue: We need to somehow preserve the information about the measure w on the graph.

Thus, we define a *cocycle function* on the (directed) edges of G:

$$\rho(x,y) := \frac{w(y)}{w(x)}.$$

The name 'cocycle' comes from the fact that for any directed circuit $v_0, v_1, \ldots, v_n = v_0$ the following holds:

$$\prod_{k=0}^{n-1} \rho(v_k, v_{k+1}) = 1.$$

In particular, for any edge (v, w), $\rho(v, w) = \rho(w, v)^{-1}$.

 $C = (G, \rho)$ is called simply a cocycle. We let \mathfrak{C} denote the set of finite connected rooted cocycles. (r, ϵ) -neighborhood of a cocycle *C* is the set of all rooted cocycles *D* whose *r*-ball around the root is isomorphic to the *r*-ball in *C* and on each respective edge the cocycle functions differ by no more than ϵ . Similarly as before, any finite weighted graph C = (G, w) with an associated cocycle function ρ induces a measure on \mathfrak{C} by

$$\mu_{\mathcal{C}} := \sum_{v \in V(G)} w(v) \delta_{(\mathcal{C}_v, v, \rho)}.$$

A sequence of weighted graphs $(G_n, w_n)_{n=1}^{\infty}$ converges if the corresponding cocycle functions ρ_n are bounded by some K > 0 and the measures μ_{C_n} weakly converge.

A limit measure of a sequence of finite weighted graphs can also be represented with a "graphing" of an action of Γ . An action $\alpha : \Gamma \frown (X, \nu)$ is called nonsingular if it preserves the measure class, i.e. for any $\gamma \in \Gamma$ and any measurable $A \subseteq X$

$$\mu(A) = 0$$
 iff $\mu(lpha_{\gamma}A) = 0.$

Note: For nonsingular actions, for each $\gamma \in \Gamma$, the Radon-Nikodým derivative of the map α_{γ} exists on a co-null subset of X. Moreover, the Radon-Nikodým derivatives form a cocycle on X.

Therefore, there exists a map $M : (X, \nu) \to \mathfrak{C}$ which assigns to each $x \in X$ the Schreier graph on the orbit of x together with the cocycle function arising from the Radon-Nikodým derivatives of the maps $\alpha_s, s \in S$.

When $M_*\nu$ is a weak limit of the measures μ_{C_n} , we say that the nonsingular graphing of α is a limit of the of sequence weighted graphs $(G_n, w_n)_{n=1}^{\infty}$.

Definition

A graphing \mathcal{G} of a nonsingular action α on a probability space (X, μ) is called *hyperfinite* if for any $\epsilon > 0$ and $K \in \mathbb{N}$ there is a set $Z \subseteq X$ such that the components of $\mathcal{G} - Z$ have at most K elements.

Definition

A sequence of weighted graphs $(G_n, w_n)_{n=1}^{\infty}$ is called *hyperfinite* if for any $\epsilon > 0$ and $K \in \mathbb{N}$ there are sets of nodes $Z_n \subseteq V(G_n)$ such that all components of $G_n - Z_n$ have at most K nodes and $\sum_{v \in Z_n} w_n(v) < \epsilon$.

Theorem (Elek, K)

Let \mathcal{G} be a graphing of a non-singular action which is a local limit of a weighted graph sequence $(G_n, w_n)_{n=1}^{\infty}$. Then \mathcal{G} is hyperfinite if and only if $(G_n, w_n)_{n=1}^{\infty}$ is hyperfinite.

< □ > < 同 >

- 金田 - 金田 -

э